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Abstract

Statistical Process Control (SPC) techniques such as control charts
and Pareto analysis, are widely applied in quality management to
evaluate process stability and identify dominant sources of variation
over time. These tools provide manufacturing industries with
powerful tools to drive continuous improvement, support data-
driven decision-making, and enhance customer satisfaction. The
main objectives of this study are to classify and analyse the different
types of defects and assess the process stability in the Hot Strip mill.
This study adopts a quantitative case study at the Hot Rolling Mill
of the Libyan Iron and Steel Company (LISCO). Pareto analysis and
C control chart were used to identify dominant defect recourse and
assess process stability respectively. Inspection reports and
production data were collected and processed using spreadsheet
software to assess the quality performance of tinplate production.
Pareto analysis reveals that approximately 80% of defects are
concentrated in four categories: Telescope (TEL), Over Thickness
(OVT), Under Thickness (UNT), and Cracked Edge (CRE). Control
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chart results further indicated irregularities in the production
process, with several defect occurrences falling outside statistical
control limits and the variation is systematic not random. Also. the
study reveals the statistical methods are not used in continuous basis
on hot strip mill.

Keywords: Statistical Quality Control, Hot Rolling Mill, Pareto
Chart,C- Control Charts, defects, variation.
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Introduction

The iron and steel industry is a cornerstone of global economic
growth and industrialization, providing essential raw materials for
infrastructure, construction, transportation, energy systems, and
advanced manufacturing. In many countries, the performance of the
steel sector directly reflects the pace of economic development, as
it supplies critical inputs for housing, urbanization, and industrial
projects. Within this context, the Libyan Iron and Steel Company
(LISCO), located in Misurata, Libya, stands as one of the largest
integrated steel complexes in North Africa and a key contributor to
the national economy (Company Technical Reports , 2025).
Equipped with significant production capacity and modern
facilities, LISCO plays a vital role in meeting domestic demand and
supporting  regional markets. However, like many steel
manufacturers worldwide, the company continues to face challenges
in  maintaining consistent product quality, particularly in
reinforcement bars and tin rolls, where defect rates affect both
competitiveness and customer satisfaction. To address these
challenges, Statistical Quality Control (SQC) techniques have
emerged as indispensable tools in the steel industry. By
systematically analyzing production data, monitoring process
performance, and identifying the root causes of variability, SQC not
only reduces the occurrence of defects but also fosters a culture of
continuous improvement (Montgomery & C, 2020). Prior studies
have demonstrated the effectiveness of SQC in minimizing waste,
optimizing resources, and ensuring compliance with international
standards such as those of the British and German markets.
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Applying these methods at LISCO offers a dual opportunity: to
enhance the reliability of reinforcement bar production, which is
generally in line with specifications, and to significantly improve
the quality of tin roll production, where higher defect rates remain a
concern. The main objectives of this study are to classify and
analyze the different types of defects at the Hot Rolling Mill of the
Libyan Iron and Steel Company, and to apply statistical methods,
specifically control charts and Pareto analysis, to evaluate and
monitor the quality of the product.

Literature review

Several studies have highlighted the effectiveness of Statistical
Quality Control (SQC) in monitoring production quality and
detecting variability in manufacturing processes. (Banker, Chang, &
Natarajan, 2014) demonstrated the use of X-bar, R, P, and C charts
in pipe manufacturing to detect process variability, while (Motorcu
& Gullt, 2014) applied SPC tools in machining processes to identify
defect causes and enhance surface quality. More advanced
approaches have been developed in recent years, such as the
integration of Taguchi’s loss function into economic X-bar chart
design to show its impact on sensitivity and cost efficiency (S. T. A.
N., 2021). Also, the application of SQC has been strongly linked to
broader quality management frameworks, with Six Sigma and Lean
Six Sigma remaining widely used to systematically reduce defects
and improve process performance; for example, a study in a steel
galvanizing line reported an increase in process cycle efficiency
from 22% to 62% after applying Lean Six Sigma (Srinivasan,
Ramesh, & Sundaram, 2023). With the advancement of Industry
4.0, SQC methods, which are increasingly combined with digital
technologies and artificial intelligence, where non-invasive sensors
and predictive models have been employed to estimate steel
properties with high accuracy (Straat, Koster, Goet, & Bunte, 2022),
and multiple kernel learning has been used for early prediction of
defects in thermally coated steel components (Rannetbauer,
Hubmer, Hambrock, & Ramlau, 2025). Reviews of SPC
applications confirm its continued relevance, but emphasize that
successful implementation depends not only on tools and
technology but also on operator training and the development of a
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strong quality culture within organizations (Hadiyanto & Sitepu,
2023). (Godina, Matias, & Azevedo, 2016) demonstrated the
application of Statistical Process Control (SPC) in the automotive
industry, showing that control charts and decision analysis can
significantly improve productivity and meet increasing quality
requirements.

Methodology

Although the Libyan company holds an ISO 9001 conformity
certificate, it has not been updated due to the company's distance
from the practical aspect in the field of quality, which greatly helped
the company to realize the importance of applying quality tools in
order to diagnose and analyze the causes of the production process
deviation for the sheet coil product, the Hot Rolling Mill factory
management provided researchers with all possible data and made
it available for the purpose of the required study.

In the study, a quantitative case study approach suits the case under
analysis. The study was carried out in steps:

- Data collection

In order to evaluate the production quality of tin rolls at the Hot
Rolling Mill of the Libyan Iron and Steel Company, inspection data
were collected over a three-month period (January—March 2025).
The production was organized into three shifts (Morning, Evening,
and Night), and within each shift, four operator groups (A, B, C, and
D) were identified. These groups represent different operating teams
responsible for running the mill during the shifts. For each group
and shift, the number of inspected coils and the corresponding
defects were recorded. The sample size was defined as the total
number of coils produced and inspected during the study period,
with defect counts expressed relative to this production volume.
This allowed the calculation of defect rates rather than absolute
frequencies. Sampling was performed continuously during the
shifts, ensuring that the collected data reflected the actual variability
of the production process.

Microsoft Excel and Minitab were used to process and analyze the
data. Defect types were classified into four categories: dimensional,
surface, and appearance. This structured dataset enabled meaningful
comparisons across groups and shifts, and facilitated the application
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of statistical control charts and Pareto analysis to identify dominant
defect categories and assess process stability over time. Their
findings highlight the importance of SPC as a systematic tool for
achieving sustainable competitiveness. Overall, the literature
indicates that while significant progress has been achieved in
applying SQC in steel and related industries worldwide, there is still
limited evidence of systematic applications in Libyan steel
manufacturing contexts. This highlights a research gap, particularly
in addressing the role of SQC tools combined with cultural and
organizational improvements, which the present study aims to fill
by evaluating production quality in LISCO. These studies
underscore the value of SQC tools in early detection of process
deviations, supporting informed decision-making, and minimizing
production losses. This paper builds upon such findings by
implementing SQC techniques in the Libyan context, specifically
focusing on tin rolls.

This study addresses the persistent quality challenges in the Libyan
Iron and Steel Company (LISCO), with a particular emphasis on the
high defect rate in hot roll production, which adversely affects
product quality, increases waste, and undermines compliance with
international standards. The main objectives of this study are to
classify and analyze the different types of defects in Hot roll
production at the Hot Rolling Mill of the Libyan Iron and Steel
Company, and to apply statistical methods specifically control
charts and Pareto analysis to evaluate and monitor the quality
performance of coil production. By addressing these objectives, the
research seeks to provide a systematic assessment of process
stability, identify the most critical sources of variability, and
contribute to the development of a stronger quality culture within
the company.

- Defects classifications

Dimensional defects: There are six defects related to the dimension,
which are shown in table 1.

Appearance defects: There are 13 defects related to appearance are
shown in Table 2.

Surface defects: There are 15 defects related to appearance are
shown in Table 2.

6 Copyright © ISTJ Ak sine qolall (3 s
Al 5 o glall 4 sall dlsall


http://www.doi.org/10.62341/manh8791

International Science and

Technology Journal
4,581 g o slall 41 gal) Alaal)

Volume 38 axd)
Part 1 Aaal

A y o gt B0 550 g

Imtrwaational beimrs mad Taviasiags demraal

sTa

http://www.doi.org/10.62341/manh8791

Table 1 Dimensional deviation defects of sheet coils.

No. Type of Defect The symbol
1. Over Thickness ovT
2. Over Width OovWw
3. Under Thickness UNT
4, Under Width UNW
5. Profile Variation PRV
6. No Graph N.G
Table 2Appearance Defects of sheet coils
No. Type of Defect The symbol
1. Bad Tail BAT
2. Bended Edge BEE
3. Cracked Edge CRE
4, Camber CAM
5. Ellipse ELL
6. Fish Tail FIT
7. Loose LOS
8. Telescope TEL
9. Toren Edge TOE
10. Waviness WAV
11. Wrinkle WRN
12. Zig Zag Z2ZC
13. Handing Damage HAD
Table 3 Surface Defect of sheet coils
No. Type of Defect The symbol
1. Fire Crack FIC FIC
2. Hot Mill Fold HMF
3. Hole HOL
4, Indentation IND
5. Rolled in Scale RIS
6. Roll Mark ROM
7. Rolled in Material RIM
8. Scratches SCR
9. Blister BLR
10. Edge Lamination EDL
11. Pipe Lamination PIL
12. Skin Lamination SKL
13. Sliver SLV
14. Grease / Dirt Pit GDP
15. Ruse RUS
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- Analytical Assessment Tools

Data analysis employed Microsoft Excel and Minitab software, the

assessment utilized two complementary analytical approaches:

e Pareto Analysis

It is a tool applied to identify and prioritize the main defects
categories based on frequency analysis. This  approach
followed the standard pareto principle to distinguish
between major and minor quality problems.

e C-control charts

After identifying the different types of defects by including
them within four groups, we move on to applying statistical
methods to control the quality of the product (coil) in the hot
rolling mill, which is the second objective of this research.

The most commonly used charts to monitor and continuously
control the production process capability are the Attribute Control
Charts .The choice of control chart depends on the type of data being
analysed (Izenman, 2008), based on common scenarios for shifts
and groups as shown in figure 4, in this study has been used a C
chart (also known as a Count Control Chart) is used to monitor the
number of defects or nonconformities in a fixed-size sample of
items. It is particularly useful when each item can have multiple
defects, and we interested in counting the total number of defects
rather than just identifying if an item is defective. a control chart for
defects or nonconformities, or ¢ chart with three-sigma limits would
be defined as follows:

CL=c Q)
UCL=c+3V (¢) (2)
CL=c -3\(c ) (set to zero if negative) (3)

Assuming that a standard value for c is available. Should these
calculations yield a negative value for the LCL, set LCL = 0, If no
standard is given, then ¢ may be estimated as the observed average
number of nonconformities in a preliminary sample of inspection
units (Ott, Schilling, & Neubauer, 2005).
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Results and Discussion

These reports work in three shifts: morning, evening, and night (M,
E, N), which are divided into four groups labeled (A, B, C, D).

Table 4 shows the number of defective parts for January 2025, their
weights, and their percentage of the monthly production, detailed
according to the shifts and groups.The data in the table 4 shows that
the highest defective type was the Telescope (TEL) with 34 defects,
followed by the Excessive Thickness (OVT) with 21 defects, and
the third most frequent defect was the Under Thickness (UNT) with
15 defects. It is noted that the highest number of defects was
distributed across two groups, (B, D).

The study used Microsoft Office Excel to represent a Pareto chart,
where the types of defects, the percentage of defective parts, and the
cumulative defect were represented as shown in Table 4, on the axes
of the Pareto chart, as shown in Figure 1.

Table 4 Types of Defects, Percentage of Defective Items, and
Cumulative Defects for January

Defects GROUPS Cumulative Cumulative
TOTAL Amount Percentage
A B C D
ovT 3 10 3 5 21 21 21
UNT 7 2 4 2 15 36 35
ovw 2 2 0 8 12 48 47
ELL 0 0 0 0 0 48 47
UNW 1 0 0 1 2 50 49
TEL 9 3 9 13 34 84 82
ZZC 0 0 0 0 0 84 82
RIS 1 0 0 0 1 85 83
N.G 0 1 0 0 1 86 84
TOE 0 0 0 0 0 86 84
CRE 8 0 1 4 13 99 97
EDL 0 0 0 0 0 99 97
LOS 0 0 0 1 1 100 98
FIC 0 0 0 0 0 100 98
COB 0 0 0 0 0 100 98
BAT 0 0 0 0 0 100 98
BEE 0 2 0 0 2 102 100
FIT 0 0 0 0 0 102 100
HMF 0 0 0 0 0 102 100
ROM 0 0 0 0 0 102 100
9 Copyright © ISTJ b gine okl (3 gia
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To represent the data on a Pareto chart, it is necessary to sort the
defects in descending order, from highest to lowest, and then
cumulatively sum the defects. After that, the cumulative percentage
Is calculated.

OVT CRE UNW RIS EDL COB FIT ROM
TEL UNT OVW BEE FIC HMF

Figure 1 Pareto Chart of Defective Coils for January

From Figure 1, it can be seen that 80% of the defects are represented
by the largest proportion of defects occurring in Telescope (TEL)
shape, Over Thickness (OVT), Under Thickness (UNT), Cracked
Edge (CRE) and Over Width (OVW). The data in Table 5 indicates
that the highest defect was for the Telescope (TEL) type at 209
occurrences, followed by the Over Thickness (OVT) defect at 100
occurrences, and the third most frequent defect was the Under
Thickness (UNT) type at 41 occurrences.

Table 5 Types of Defects, Percentage of Defective Items, and
Cumulative Defect for February

Defects GROUPS Cumulative | Cumulative

A B C D | TOTAL Amount Percentage
TEL 31 45 52 | 81 209 209 41
OoVvT 33 17 11 | 39 100 309 61
UNT 13 11 12 | 5 41 350 69
UNW 8 10 11 | 10 39 389 76
CRE 1 15 11 | 9 36 425 83
ELL 16 1 9 4 30 455 89
OoVvW 2 7 9 3 21 476 93
N.G 3 1 7 2 13 489 96
BAT 1 3 1 4 9 498 98
RIS 2 0 0 4 6 504 99
BEE 0 0 4 0 4 508 100
ZZC 0 1 0 1 2 510 100
EDL 0 0 0 0 0 510 100
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TOE 0 0 0 0 0 510 100
LOS 0 0 0 0 0 510 100
FIC 0 0 0 0 0 510 100
COB 0 0 0 0 0 510 100
FIT 0 0 0 0 0 510 100
HMF 0 0 0 0 0 510 100
ROM 0 0 0 0 0 510 100

Chart Title

100
: Mm 39 36
A i o
P

OVT UNW EIL NG RIS ZZC TOE FIC FIT ROM
TEL UNT CRE OVW BAT BEE EDL LOS COB HMF

o o

Figure 2 Pareto Chart of Defective Coils for February

From Figure 2, it can be seen that approximately 80% of the total
defects are concentrated in a few dominant categories, Telescope
(TEL), Over Thickness (OVT), Under Thickness (UNT), and
Cracked Edge (CRE), indicating that these defect types have the
most significant impact on overall product quality.

m(72313101076631000000

f

‘\%\«* OV E VRO ot WP RO PG00 o (€

Figure 3 Pareto chart of number of defective Coils for March
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Table 6 Types of Defects, Percentage of Defective Items, and
Cumulative Defects for March

Defects GROUPS Cumulative | Cumulative
TOTAL Amount Percentage
A B cC| D
TEL 62 | 38 | 54| 47 201 201 38
OoVvT 25 16 | 14| 36 91 292 54
UNW | 18 19 | 16| 14 67 359 67
UNT 14 9 |12 15 50 409 76
EDL 8 5 32| 3 48 457 85
CRE 8 6 6 3 23 480 90
ELL 0 2 4 7 13 493 92
BAT 6 3 1 0 10 503 94
ROM 0 0 0 | 10 10 513 96
BEE 0 0 4 3 7 520 97
RIS 1 4 0 1 6 526 98
N.G 1 2 1 2 6 532 99
ZZC 0 0 1 2 3 535 100
ovw 1 0 0 0 1 536 100
TOE 0 0 0 0 0 536 100
LOS 0 0 0 0 0 536 100
FIC 0 0 0 0 0 536 100
COB 0 0 0 0 0 536 100
FIT 0 0 0 0 0 536 100
HMF 0 0 0 0 0 536 100

The Figure 3 shows that 80% of the defects represent the largest
proportion of defects and occur in the Telescope (TEL) shape, Over
Thickness (OVT), Under Thickness (UNT) and Cracked Edge
(CRE) The control chart for the mean is drawn so that the x-axis
represents the defects in the samples in the order they were taken,
while the y-axis represents the mean value. Each chart has three
lines: the center line, the upper control limit, and the lower control
limit. A total of 20 defects were taken, each with a size of 4
observations, during the months of January, February, and March
2025. Table 7 shows the calculation of the ¢ chart and control limits
for January 2025.
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Table 7 Control limits and average calculation for January

Defects A B C D mean value
ovT 3 10 3 5 5.25
UNT 7 2 4 2 3.75
ovw 2 2 0 8 3
WAV 0 0 0 0 0
UNW 1 0 0 1 0.5
TEL 9 3 9 13 8.5
Z2ZC 0 0 0 0 0
RIS 1 0 0 0 0.25
N.G 0 1 0 0 0.25
TOE 0 0 0 0 0
CRE 8 0 1 4 3.25
ELL 0 0 0 0 0
LOS 0 0 0 1 0.25
FIC 0 0 0 0 0
COB 0 0 0 0 0
BAT 0 0 0 0 0
BEE 0 2 0 0 0.5
FIT 0 0 0 0 0
HMF 0 0 0 0 0
ROM 0 0 0 0 0

The control limits for the C-chart were calculated based on the
average number of defects observed during January. The center line
(CL) was found to be 1.275, while the upper control limit (UCL)
was 4.662, and the lower control limit (LCL) was equal to zero,
reflecting the non-negative nature of defect count data. These
control limits were used as statistical reference values to assess the
stability of the production process and to identify any abnormal

variations in defect occurrences. The following figure shows the average
percentage of defects for tin rolls for January 2025.
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C chart- January 2025

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

average UCL e es &»(C] emmmI]CL

Figure 4 Average of defects percentage for tin rolls for January

It is clear from Figure 5 that the number of defects for samples No.
1 and 6 falls outside the upper limit of control, and this indicates
irregularity in the production process, which requires identifying the
causes. Table 8 shows the calculation of the ¢ chart and control
limits for February 2025.The control limits of the C-chart were
determined based on the average number of observed defects. The
center line (CL) was calculated as 6.375 defects, while the upper
control limit (UCL) reached 13.9496, and the lower control limit
(LCL) remained at zero, due to the non-negative nature of defect
data. These control limits served as reference thresholds for
monitoring process stability and detecting any unusual variations in
defect occurrence during the February production period.

Table 8 Control limits and average calculation for

Defects A B C D mean value
OoVvT 33 17 11 39 25
UNT 13 11 12 5 10.25
OoVvW 2 7 9 3 5.25
WAV 0 0 0 0 0
UNW 8 10 11 10 9.75
TEL 31 45 52 81 52.25
Z7C 0 1 0 1 0.5

RIS 2 0 0 4 1.5
N.G 3 1 7 2 3.25
TOE 0 0 0 0 0
CRE 1 15 11 9 9
ELL 16 1 9 4 7.5
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LOS 0 0 0 0 0
FIC 0 0 0 0 0
COB 0 0 0 0 0
BAT 1 3 1 4 2.25
BEE 0 0 4 0 1
FIT 0 0 0 0 0
HMF 0 0 0 0 0
ROM 0 0 0 0 0

C chart- February 2025

1 2 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20

average UCL e es=(C], o—]CL

Figure 5 Average of defects percentage for tin rolls for February

It is clear from Figure 6 that the number of defects for samples No.
1 and 6 falls outside the upper limit of control, and this indicates
irregularity in the production process, which requires identifying the
causes. Table 9 shows the calculation of the ¢ chart and control
limits for March 2025. The C-chart control limits indicated a center
line (CL) of 6.7, an upper control limit (UCL) of 14.4653, and a
lower control limit (LCL) of 0, supporting the evaluation of process
stability.

Table 9 Control limits and average calculation for March

Defects A B C D mean value
OoVT 25 16 14 36 22.75
UNT 14 9 12 15 12,5
OoVvWwW 1 0 0 0 0.25
EDL 8 5 32 3 12
UNW 18 19 16 14 16.75
TEL 62 38 54 47 50.25
Z7C 0 0 1 2 0.75

RIS 1 4 0 1 15
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N.G 1 2 1 2 15
TOE 0 0 0 0 0
CRE 8 6 6 3 5.75
ELL 0 2 4 7 3.25
LOS 0 0 0 0 0
FIC 0 0 0 0 0
COB 0 0 0 0 0
BAT 6 3 1 0 2.5
BEE 0 0 4 3 1.75
FIT 0 0 0 0 0
HMF 0 0 0 0 0
ROM 0 0 0 10 2.5

C chart- March 2025

1 2 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20

average UCL o= e»(C], o—]CL

Figure 6 Average of defects percentage for tin rolls for March

It is clear from Figure 7 that the number of defects for samples No.
1, 5 and 6 falls outside the upper limit of control, and this indicates
irregularity in the production process, which requires identifying the
causes.

Conclusion and Recommendations

This study applied Statistical Quality Control (SQC) techniques
including control charts and Pareto analysis to evaluate and monitor
the production quality at the Libyan Iron and Steel Company
(LISCO), with a particular focus on tin roll manufacturing. The
results indicated tin roll production exhibits a high frequency of
defects that compromise product quality and process stability.
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Pareto analysis revealed that four dominant defect types Telescope
(TEL), Over Thickness (OVT), Under Thickness (UNT), and
Cracked Edge (CRE) account for over 80% of the total recorded
defects. Control charts further confirmed process instability, with
several sample points falling outside the statistical control limits.
These out-of-control conditions suggest the presence of assignable
causes, such as equipment misalignment, inconsistent raw material
properties, or operator-related variations.

The control charts revealed several out-of-control points,
particularly in samples 6 and 11 (OVT and TEL respectably) across
the three-month period. These deviations may be attributed to
irregularities in  raw material input, operator handling
inconsistencies, or equipment calibration issues. To address these
anomalies, corrective actions such as recalibrating rolling
equipment, enhancing operator training, and implementing stricter
input material checks are recommended.

The observed process instability highlights underlying challenges
faced by the company, including limited use of statistical tools,
insufficient documentation of defect sources, and lack of real-time
monitoring. Compared to similar studies in steel manufacturing.
LISCO’s current practices show a gap in systematic quality control.
While other facilities have successfully reduced defect rates through
integrated SPC and Six Sigma frameworks, LISCO still relies on
manual inspection and reactive measures. This underscores the need
for a proactive, data-driven quality strategy.

Based on the identified out-of-control points and recurring defect
categories, the following targeted recommendations are proposed:
1-Prioritize corrective actions on the dominant defect types (TEL,
OVT, UNT, CRE), which together account for more than 80% of
total defects, by investigating equipment calibration, raw material
consistency, and operator practices.

2-Enhance operator and quality staff training with a focus on
practical application of SPC tools, root cause analysis, and defect
prevention, addressing the lack of systematic statistical methods
currently observed at LISCO.

3-Establish preventive maintenance programs for rolling equipment
to reduce mechanical deviations that contribute to thickness and
edge defects.
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4-Adopt structured root cause analysis methods (e.g., 5 Whys,
Fishbone Diagram) specifically for recurring out-of-control
conditions, linking corrective actions directly to identified causes.
5-Introduce digital, real-time quality monitoring systems (such as
SCADA, Minitab, Power BI) to improve traceability, accelerate
decision-making, and reduce reliance on manual inspection.
6-Strengthen and update the ISO 9001 quality management system,
embedding continuous improvement and risk-based thinking to
address organizational gaps and foster a proactive quality culture.
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